Knowledge Base Question Answering Based on Deep Learning Models

نویسندگان

  • Zhiwen Xie
  • Zhao Zeng
  • Guangyou Zhou
  • Tingting He
چکیده

This paper focuses on the task of knowledge-based question answering (KBQA). KBQA aims to match the questions with the structured semantics in knowledge base. In this paper, we propose a two-stage method. Firstly, we propose a topic entity extraction model (TEEM) to extract topic entities in questions, which does not rely on hand-crafted features or linguistic tools. We extract topic entities in questions with the TEEM and then search the knowledge triples which are related to the topic entities from the knowledge base as the candidate knowledge triples. Then, we apply Deep Structured Semantic Models based on convolutional neural network and bidirectional long short-term memory to match questions and predicates in the candidate knowledge triples. To obtain better training dataset, we use an iterative approach to retrieve the knowledge triples from the knowledge base. The evaluation result shows that our system achieves an AverageF1 measure of 79.57% on test dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Attention-Based Word-Level Interaction Model: Relation Detection for Knowledge Base Question Answering

Relation detection plays a crucial role in Knowledge Base Question Answering (KBQA) because of the high variance of relation expression in the question. Traditional deep learning methods follow an encoding-comparing paradigm, where the question and the candidate relation are represented as vectors to compare their semantic similarity. Maxor averagepooling operation, which compresses the sequenc...

متن کامل

The Limited Effectiveness of Neural Networks for Simple Question Answering on Knowledge Graphs

Simple factoid question answering (QA) is a task, where the questions can be answered by looking up a single fact in the knowledge base (KB). However, this QA task is difficult, since retrieving a single supporting fact involves searching many alternatives given a query expressed in natural language. We use a retrieval-based approach to QA. We decompose the problem into four sub-problems: entit...

متن کامل

Question Answering with Neural Networks

Question Answering (QA) is a highlyversatile and challenging task towards real artificial intelligence. It requires machines to understand context knowledge and the question query, and provides an answer. The recent achievements of Neural Networks, or deep learning, in encoding and decoding very complicated information encouraged us to apply them to QA. In this paper, we design and implement a ...

متن کامل

Question Answering Based on Distributional Semantics

An NLP application for question answering provides an insight into computer’s understanding of human language. Many areas of NLP have recently built on deep learning and distributional semantic representation. This paper seeks to apply distributional semantic models and convolutional neural networks to the question answering task.

متن کامل

Deep Learning for Semantic Parsing

Recently, we developed USP, the first approach for unsupervised semantic parsing [11]. We applied it to extracting a knowledge base from biomedical abstracts for question answering and found that it substantially outperforms state-of-the-art systems such as TextRunner and DIRT. In this paper, we show that USP can be viewed as learning a deep network for semantic parsing. The hidden units in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016